2022 Drug Discovery Initiative (DDI) Awardees

Four investigators were awarded a Children’s Tumor Foundation Drug Discovery Initiative (DDI) Award for the 2022 grant cycle, a significant investment toward potential NF drug treatments.

Sylwia Ammoun, University of Plymouth
In vivo Testing of AXL inhibitor BGB324 and MERTK inhibitors UNC2025 and MRX2843 in the Postn-Cre; NF2floxflox Mouse Model of Schwannoma
The protein receptors AXL and MERTK have been newly identified as potential therapeutic targets in NF2-related tumors. Inhibitors of these proteins successfully reduced the growth and survival of patient-derived schwannoma and meningioma tumor cells in vitro. The goal of the present study is to examine the efficacy of these inhibitors in mouse models of NF2 schwannomas. The data generated would enable the testing of these inhibitors in human clinical trials.

Thomas DeRaedt, The Children’s Hospital of Philadelphia
Combined Inhibition of MEK and BMI-1 for the Treatment of NF1-associated High-Grade Glioma
NF1-associated high-grade gliomas (HGG) are rare but aggressive brain tumors with no effective therapy. A combination of MEK and BMI1 inhibitors were recently identified to potently kill NF1-associated high-grade glioma cells. This study will evaluate if the combination of these drugs also extends the survival of NF1 mice with high-grade glioma. The study will test the MEK inhibitor Mirdametinib and the BMI1 inhibitor PTC596 in combination.

Lawrence Sherman, Oregon Health and Science University
A Screen for Novel Schwannomatosis Pain Therapies
Schwannomatosis patients suffer from chronic, untreatable pain and the degree or type of pain differs depending on mutation type (SMARCB1 or LZTR1). Schwannomatosis tumor cells release proteins that influence the number of nerve cells that respond to pain signals. This study will use SMARCB1- and LZTR1-variant Schwann cells to test the ability of drugs targeting secretory proteins or pain-signaling proteins to relieve pain and any difference in their effects depending on the variant type.

Efthimios Skoulakis, Alexander Fleming Biomedical Sciences Research Center, Greece
Allele-specific Behavioral Pharmacogenetics of Novel NF1 Variants
NF1 patients present a variety of behavioral symptoms, including compromised learning, attention deficits, and activity and sleep disturbances, and the variability of these symptoms reflects the nature of the pathogenic variant. Drosophila modeling these human variants also present similar behavioral symptoms. This study will use variant Drosophila strains to test potential drugs against these deficits to develop personalized therapies for NF1 patients.
2021 Drug Discovery Initiative Registered Reports (DDI-RR) Awardees

Through a collaboration with top scientific journal PLOS ONE, in a process known as “Registered Reports,” awardees are offered financial support from CTF and in-principle acceptance for publication by the journal. This model allows for more rigorous, reproducible, and transparent science, guaranteeing these awardees publication, regardless of study outcome.

Jonathan Chernoff, MD, PhD, Fox Chase Cancer Center

Evaluation of a PAK1-Selective PROTAC, Alone and With Hippo Inhibitors, as a Targeted Therapy in NF2

This project aims to test whether a newly characterized PROTAC version of NVS-PAK1-1, a Pak1-selective small-molecule inhibitor, impedes oncogenic signaling and cell survival in NF2. The drug will be tested in a panel of NF2-deficient schwannoma cells alone and in combination with a Hippo pathway inhibitor.

Wade Clapp, MD, Indiana University

Preclinical Therapeutic Evaluation of ALY101 in a Murine Model of Neurofibromatosis type 2

The aim of this project is to test a novel Pak1 inhibitor, ALY101, in a genetically engineered mouse model of NF2. ALY101 blocks RHOJ and CDC42 binding to Pak1, thereby inhibiting Pak1 while also avoiding off-target inhibition of Pak2 and other proteins. The investigator hypothesizes that ALY101 will successfully reduce tumor burden and hearing loss in the NF2 mouse model.

Brian Stansfield, MD, Augusta University

Targeting Endothelial Cell to Macrophage Communication in NF1 Tumors

This proposal will assess the efficacy of imipramine, an FDA-approved macrophage macropinocytosis inhibitor, in suppressing macrophage-mediated angiogenesis and tumor growth in NF1. The study will use NF1 mouse models to generate imipramine dose response curves to facilitate easier translation to phase 1 clinical trials.

Thomas DeRaedt, PhD, The Children’s Hospital of Philadelphia

Targeting Combined MEK and HDAC Inhibition as an Effective Therapeutic Strategy for NF1 High Grade Glioma

This project is based on the observation that NF1-associated High Grade Glioma (HGG) cell lines are extremely sensitive to combined MEK-HDAC inhibition and will evaluate if this combination is also able to shrink NF1-associated HGG in mice and extend their survival.

Breakthrough Treatment for Kids with NF1 Muscle Weakness

We are happy to share an exciting breakthrough treatment from a research study co-led by CTF-funded researcher Aaron Schindeler, PhD of The Children’s Hospital at Westmead, Australia. This treatment was successfully trialed in a study and has the potential to help children with NF1 who live with muscle weakness and fatigue. The researchers found that L-carnitine, a supplement used by athletes to prevent muscle fatigue, can considerably improve muscle function in children with NF1. The work was supported by the Children’s Tumor Foundation.

CTF has contributed to both the preclinical and clinical studies that led to this incredible and very promising result, most recently in the Drug Discovery Registered Reports program, and the CTF-funded preclinical study. The CTF Clinical Research Award scheme partially funded the clinical study back in 2018 which led to a publication in the *American Journal of Medical Genetics*.

Read more about the impact this new treatment has had on the participants in the 12-week trial who live with NF1-related muscle weakness at ctf.org/news.
2020 DRUG DISCOVERY INITIATIVE REGISTERED REPORTS (DDI-RR) AWARDEES

Through a collaboration with top scientific journal *PLOS ONE*, in a process known as “Registered Reports,” awardees are offered financial support from CTF and in-principle acceptance for publication by the journal. This model allows for more rigorous, reproducible, and transparent science, guaranteeing its awardees publication, regardless of study outcome.

ANDREA RASOLA, PHD
University of Padua
TRAPping Neurofibromas: Inhibition of the Mitochondrial Chaperone TRAP1 as an Anti-neoplastic Strategy for NF1-associated Tumors
The aim of this project is to investigate whether TRAP1 inhibitors can inhibit the growth of neurofibroma cells, both benign and malignant, in animal models. Moreover, they will be tested on a mouse model that is genetically prone to the formation of malignant NF1-related tumors, in order to study whether TRAP1-targeting molecules can cause the regression of these malignancies.

JEREMIE VITTE, PHD
University of California, Los Angeles
Exploiting Macropinocytosis for Therapeutic Delivery to NF2-Deficient Schwannoma Cells
The goal of this proposal is to demonstrate that macropinocytosis, a mechanism by which cells access nutrients and other survival factors from external sources, is a specific mechanism in NF2-deficient tumors. The project will validate results obtained on cells in an NF2 mouse model.

D. WADE CLAPP, MD
Indiana University
Experimental Therapeutic Evaluation of PSC5-6 using a Pre-clinical Mouse Model of Neurofibromatosis Type 1
In this study, the researchers will test whether the RAS inhibitor PSC5-6 (a drug candidate) can halt and/or prevent the progression of plexiform neurofibromas in a genetically engineered mouse model of NF1. The proposed experiments will generate preclinical data needed to advance PSC5-6 toward a clinical trial in human NF1 patients with plexiform neurofibroma who do not respond to currently available drug therapies.

LEI XU, MD, PHD
Massachusetts General Hospital
Targeting the NRG-1/ErbB Signaling Axes for the Treatment of Schwannomatosis and Associated Pain
The project proposes to determine if schwannomatosis tumor cells, by expressing elevated levels of NRG-1, activate tumor-associated macrophages to produce inflammatory cytokines and induce pain response. The successful completion of this study will shed light on the mechanisms of schwannomatosis-induced pain and provide valuable information for the development of novel, efficacious therapies to treat this debilitating pain.

ANDREA RASOLA, PHD
University of Padua
TRAPping Neurofibromas: Inhibition of the Mitochondrial Chaperone TRAP1 as an Anti-neoplastic Strategy for NF1-associated Tumors
The aim of this project is to investigate whether TRAP1 inhibitors can inhibit the growth of neurofibroma cells, both benign and malignant, in animal models. Moreover, they will be tested on a mouse model that is genetically prone to the formation of malignant NF1-related tumors, in order to study whether TRAP1-targeting molecules can cause the regression of these malignancies.

JEREMIE VITTE, PHD
University of California, Los Angeles
Exploiting Macropinocytosis for Therapeutic Delivery to NF2-Deficient Schwannoma Cells
The goal of this proposal is to demonstrate that macropinocytosis, a mechanism by which cells access nutrients and other survival factors from external sources, is a specific mechanism in NF2-deficient tumors. The project will validate results obtained on cells in an NF2 mouse model.
NF1 GENE THERAPY INITIATIVE

The Children’s Tumor Foundation is pleased to announce the funding of two awards as part of the CTF NF1 Gene Therapy Initiative. Each award is for $240,000 for a total duration of two years. Peggy Wallace, PhD, a longtime associate of the Foundation, is the chief consultant for this initiative.

SAMANTHA GINN, PHD
Senior Research Officer, Children’s Medical Research Institute, Australia

A mutation-independent genome editing approach for the treatment of neurofibromatosis type 1 (NF1) using novel AAV vectors

Dr. Ginn and her team propose to use a clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) based homology-independent targeted integration (HITI) approach to replace large sections of mutated NF1 gene. In contrast to methods targeting individual patient-specific mutations, this approach has the advantage of targeting multiple mutations with a single gene editing vector, and thus will be applicable to many NF1 patients. To ensure clinical applicability, they will optimize the recombinant adenoassociated virus (rAAV) vector by screening and directed evolution, and test the approach in primary human Schwann cells. The ultimate goal of this study is to combine optimal gene editing tools with the most functional rAAV vectors to create reagents for in vivo NF1 editing.

JAMES WALKER, PHD
Assistant Professor, Harvard Medical School

Development of NF1 therapeutics with CRISPR-based technologies

Dr. Walker and his team aim to investigate the feasibility of using genome editing (both CRISPR-based homology-directed repair and base editing) as a therapeutic approach to correct three pathogenic NF1 mutations in cultured human Schwann cells. They will capitalize on recently developed CRISPR/Cas9 and -Cas12a variants, which increase the targeting range, activity, and fidelity (reducing off-targets) of gene editing. With a view to developing the most promising strategies into potential therapies for NF1 tumors, they will also initiate a screen to optimize viral vehicles for Schwann cells that will be essential for in vivo delivery of CRISPR genome engineering tools.

2019 DRUG DISCOVERY INITIATIVE REGISTERED REPORTS AWARDEES

Two Drug Discovery Initiative Registered Reports Awards were granted for work on therapy resistance in NF2 and DNA damage in malignant peripheral nerve sheath tumors (MPNST).

KEILA E. TORRES, MD, PHD
MD Anderson Cancer Center

Targeting DNA damage signaling and epigenetic deregulation as a combination therapy for malignant peripheral nerve sheath tumors

People with neurofibromatosis 1 (NF1) are at risk of developing malignant peripheral nerve sheath tumors (MPNSTs) over the course of their lifetime. MPNSTs are aggressive tumors for which the only effective treatment is surgery. Often, though, the tumors grow back in the same location; thus, surgery to remove the MPNST may not always be an effective long-term treatment. The goal of this study is to address the lack of non-surgical treatments for MPNST by developing a therapy that combines two anti-cancer drugs to target pathways in the cell that are altered in MPNSTs. This research will measure how effective these anti-cancer drugs are when used together and will provide the preliminary results to help researchers decide whether this combination works well enough to be tested in people with MPNST.

CHUNLING YI, PHD
Georgetown University

Evaluate Novel Hippo-Yap/Taz Inhibitors in Overcoming Therapy Resistance in NF2

Hippo-Yap/Taz signaling pathway was identified as a major mechanism showed that NF2 tumor cells might be eradicated by combining a novel class of direct Hippo-Yap/Taz inhibitors with MEK inhibitors. Moreover, several other classes of drugs (including drugs that are FDA-approved and/or in clinical trials for NF2) synergize with Yap/Taz blockade in selective killing of NF2 schwannoma cells. This project will perform high throughput combination studies of four classes of drugs predicted by preliminary studies to be synergistic with clinical Hippo-Yap/Taz inhibitors developed by industry partner Vivace Therapeutics, and select the most efficacious combinations for testing in mice.
Merlin, the protein encoded by the NF2 gene, is unique among tumor suppressors because it controls cell reproduction. Merlin controls how growth receptors respond to changes in the mechanical and physical properties of the cellular environment. We have recently discovered that merlin regulates how cells take up fluids and nutrients from the environment, through a process called macropinocytosis. In the absence of merlin, cells take in more fluids and nutrients. This project will seek to take advantage of this feature of NF2-mutant cells by utilizing this pathway for the delivery of drugs for the treatment of NF2 tumors. These studies will provide a foundation for the testing of this kind of treatment delivery for this and other therapies for NF2 patients.

The hallmark symptom of NF2 is benign bilateral vestibular schwannomas (VS). Over time, these tumors grow and may cause progressive hearing loss, which may lead to social impairment and increased clinical depression. In patients with progressive VS, a thickening of the connective tissue, called fibrosis, correlates with hearing loss. Fibrosis results in high collagen content. Recently, we found that NF2 patients with VS demonstrate elevated collagen content and fibrogenic signaling, and are plagued by hypoxia and immunosuppression. Based on these, we propose to target the fibrogenic signaling pathway to improve hearing and enhance immunotherapy efficacy. Our research will generate important and translatable results for new combination therapy paradigms that are desperately needed for this dreadful disease.

NF1 is associated with a high tumor burden in adulthood, but for many children it most profoundly impacts their school experiences through learning disabilities, muscle weakness, poor coordination, and fatigue. Recent clinical studies indicate that muscle strength is reduced by 30-50% on average in children with NF1. Our breakthrough research has not only revealed that this weakness is linked to problems in fat metabolism in muscle, but also that dietary changes and supplements can overcome this weakness. We propose to complete a final series of preclinical studies with different diets and supplements to fine-tune our design for a dietary intervention trial in children, scheduled to start in 2018.
Drug Discovery Initiative 2017 Awardees

CTF is proud to have recently funded four Drug Discovery Initiative (DDI) awards. We are enthusiastic about these exciting projects!

Jeffrey Field, PhD, University of Pennsylvania, Perelman School of Medicine
MPNST Profiling and Screening: Extension for Exome Sequencing of the Cell Lines Screened
Award amount: $25,000

In a prior DDI award, Dr. Field developed a course for students to do drug screening for 130 relevant NF drugs against 9 NF1 cancer cell lines and two NF2 cell lines. They also screened thousands of drugs against representative NF1 and NF2 cell lines. Further funding will allow Dr. Field and these students to find the mutations for each cell line to more closely correlate the sensitivity to drugs tested, and to identify new drugs to test. Additionally, the data from this project will be made public.

Verena Staedtke, MD, PhD, Johns Hopkins University, School of Medicine
Evaluation of Mebendazole as Chemoprevention in a Neurofibromatosis 1 Transgenic Mouse Model
Award amount: $85,000

This project will explore using chemoprevention, the use of drugs to reduce the risk of cancer development, by repurposing a particular drug for the prevention of MPNST development. The drug, Mebendazole (MBZ), has shown benefits in colorectal cancer syndromes previously, and will be tested in a MPNST mouse model. If successful, the results will have an immediate impact on patient care; the highest death rate among NF1 patients is due to MPNST, and this project hopes to reduce this cancer frequency among NF1 patients.

Andrea Rasola, PhD, University of Padova, Department of Biomedical Sciences
Targeting the Mitochondrial Chaperone TRAP1 to Inhibit Plexiform Neurofibroma Growth
Award amount: $40,000

Changes in cell metabolism constitute a driving force for the growth of many tumor types. Dr. Rasola and his group have also found that TRAP1, a protein that has a crucial function in the control of the energy metabolism of tumor cells, is mandatory for neurofibroma growth. The aim of this project is the identification of molecules that inhibit TRAP1, which might block neurofibroma progression. It is hoped that these new compounds will be the first step in the development of selective and effective anti-neoplastic drugs for NF1 patients.

Dr. Marco Giovannini, MD, PhD, University of California, Los Angeles
Preclinical Safety and Efficacy Evaluation of Long-Term Anti-VEGFA Treatment Administration in a GEM Model of NF2-Related Schwannoma
Award amount: $84,999

Case reports and clinical trials have reported that bevacizumab (Avastin), can induce both tumor regression and hearing improvement in patients with NF2-associated vestibular schwannomas. Dr. Giovannini will test Avastin in an NF2 mouse schwannoma model to analyze its efficacy in terms of tumor shrinkage and hearing performance. Setting the Avastin response baseline in mice will allow prioritization of new drugs by comparing their efficacy, and will therefore aid the choice of new drug candidates for clinical trials in NF2 patients.
2015 Drug Discovery Initiative Awardees:

CTF awarded five Drug Discovery Initiative (DDI) awards in its first of two calls for applications in 2015. Two of the awards will target novel therapies for NF1-related tumors, specifically malignant peripheral nerve sheath tumors (MPNSTs), and three for NF2-related tumor therapies. We are enthused to be able to fund these exciting projects!

Alexander Schulz, MD, PhD, of Leibniz Institute for Age Research, Germany, received an $85,000 in vivo award for his proposed study, “Establishing a protein replacement therapy for the treatment of Schwann cell-derived nerve sheath tumors.” This proposal aims to establish an innovative approach using recombinant proteins to prevent schwannoma development by altering the interaction of Schwann cells and axons (long nerve cell protrusions).

Andrea McClatchey, PhD, of Massachusetts General Hospital/Harvard University, received a $40,000 award allowing her to continue to work on her 2014 project, “Expanded testing of centrosome-unclustering drugs in NF2-mutant tumors.” Centrosomes are so-called cellular organelles that are essential for normal cell division, and their overduplication is a feature in tumor cells. The goal in this expanded study is to investigate the sensitivity of other NF2-mutant tumor cells, particularly meningioma, to centrosome targeting drugs and to test an expanded panel of these drugs that act in different ways on all NF2 tumor types.

Lei Xu, MD, PhD, of Massachusetts General Hospital, received an $85,000 award for her proposed study “Combining immunotherapy and antiangiogenic therapy in an NF2 schwannoma model.” The use of bevacizumab, a so-called antiangiogenic drug, in the treatment of NF2 vestibular schwannomas has shown an ability to improve hearing in some patients. The proposed study will combine the use of bevacizumab with immunotherapy, and if the results are superior to either treatment alone, Dr. Scott Plotkin of MGH will use the results to design a clinical trial for NF2 patients.

Jeffrey Field, PhD, of University of Pennsylvania, received a $40,000 in vitro award for his proposal “MPNST profiling and screening: an experiment in research-based education.” This project will create the first ever college course in drug screening, and will specifically screen for drugs for NF1 MPNSTs. Students will screen drugs, both known and novel, against NF tumor cell models, primarily cancer models. The known drugs will serve as a starting point for comparison with other screening efforts.

Steven Lewis Carroll, MD, PhD, of the Medical University of South Carolina, received an $85,000 in vivo award for his proposed study “Combinatorial therapy with receptor tyrosine kinase inhibitors for MPNST.” This study will identify three drugs (all currently in clinical use or clinical trials for other cancer types) that effectively inhibit MPNST proliferation. These drugs will be tested in various combinations in hopes of generating sufficient data to attract follow-on funding from the NIH or DOD to expand testing of RTK therapies for the difficult-to-treat MPNSTs.
A. THOMAS LOOK, MD,
of the Dana-Farber Cancer Institute, was granted an *in vivo* DDI Award for his proposal, *“Drug discovery for NF1-associated malignant peripheral nerve sheath tumors using the zebrafish model.”*

NF1-related MPNSTs are very aggressive tumors with poor prognoses for the patients who are diagnosed with it. Surgery to remove MPNSTs is not effective because they often recur and metastasize. Chemotherapy regimens are not only ineffective, but toxic to the patient. Dr. Look and his team have developed a zebrafish model, through which they will rapidly screen drugs that are already in use in humans, obviating the need to perform expensive and time-consuming toxicology studies. They predict that they will be able to identify one or more already-FDA-approved drugs, which have been developed for other diseases, that will show activity against MPNSTs. These drugs could potentially be “repurposed” to more effectively treat this small subset of NF1 patients.

JOSEPH KISSIL, PhD,
of the Scripps Research Institute, was granted an *in vivo* DDI Award for his project, *“Assessing the anti-tumor activity of crizotinib in NF2-deficient meningioma.”*

Dr. Kissil and his team have identified an already-FDA-approved drug, known as crizotinib, as having anti-tumor activity against NF2-related schwannomas. This drug is already in use in patients with lung cancer and has demonstrated few side effects, and is therefore safe. A clinical trial is currently being initiated to test crizotinib against schwannoma in NF2 patients. The group will now assess whether crizotinib can also be useful against another NF2-related tumor, meningioma, by testing this drug in cell and animal models. Should this show a desirable effect, it would indicate that the trial being initiated should be expanded to include meningioma in addition to schwannoma.

NANCY RATNER, PhD,
of Cincinnati Children’s Hospital, was granted an *in vitro* DDI Award for her study, *“Mechanisms of resistance to MEK inhibition in neurofibroma.”*

This study aims to find drugs that reduce neurofibroma size and are potentially curative. We already know that drugs that target MEK proteins shrink most neurofibromas. In patients with NF1, the mutated gene, neurofibromin, can no longer do its proper function of turning off a protein called Ras. When Ras is on, downstream pathways (that include MEK) are also active, contributing to neurofibroma formation. By using a drug to inhibit MEK, the over-active pathway is turned off, which can shrink neurofibromas. However, both in humans and in preclinical trials in mice, inhibiting MEK doesn’t always work and some neurofibromas show resistance to MEK inhibition. Dr. Ratner and her team will work to determine what else is being turned on during MEK inhibition so that it can also be targeted, prevent drug resistance, and identify an increasingly successful treatment for patients with NF1.
2014 **DRUG DISCOVERY INITIATIVE AWARDS:** Round 1 Recipients

The Drug Discovery Initiative (DDI) awards program is focused on seed funding preclinical drug testing studies on neurofibromatosis in cell or animal models, and is one of the most successful Children’s Tumor Foundation programs to date. The Foundation is pleased to announce the most recent recipients of this important grant.

Miriam Smith, PhD
University of Manchester

Treatment of Neurofibromatosis Type 2 (NF2) by Exon Skipping

Neurofibromatosis type 2 (NF2) is a neurogenetic disorder that predisposes patients to develop tumors of the nervous system. It is known that NF2 disease is caused by mutation of the NF2 gene. Dr. Smith will use the DDI award to develop a cutting-edge method to ‘rescue’ mutations in coding regions of NF2, where 98-99% of small mutations are found.

David Largaespada, PhD
University of Wisconsin-Madison

Targeting Hyaluronic Acid for NF1-associated Tumors

Malignant peripheral nerve sheath tumors (MPNST) remain the leading cause of death for NF1 patients and most therapies have failed to demonstrate effectiveness against plexiform neurofibromas and MPNSTs. Recently, Dr. Largaespada and colleagues showed that a combination of two drugs, RAD001 and PD-901, were effective at treating mice that develop Schwann cell tumors. To improve drug delivery to the tumors, Largaespada will combine these drugs with PEGPH20, which has been shown to safely and effectively improve drug delivery and efficacy of chemotherapy in patients.

Gregory Riggins, MD PhD
Johns Hopkins University

Testing Combinations of FDA-approved Agents with and without Radiation Therapy in an NF2 Schwannoma Murine Model

Dr. Riggins will use the DDI award to examine the safety and efficacy of radiation combined with compounds that effect NF2 tumor growth through multiple pathways, including kinase inhibitors and mTOR inhibitors. He will first test the toxicity and efficacy of each compound alone and then will test their effect together with and without radiation therapy.

Andrea McClatchey, PhD
Harvard Medical School

Preclinical Investigation of Centrosome Unclustering Drugs in NF2-mutant Schwannoma

Excess numbers of centrosomes, a part of the cell that is essential for normal cell division, occurs in many different tumor types and is a feature of tumors that differentiate them from normal cells. Merlin has a key role in controlling the number of centrosomes within cells. Dr. McClatchey will use the DDI award to test if NF2 tumors are more sensitive to drugs that target excess centrosomes.

For more information, please visit www.ctf.org/ddi.

More Children’s Tumor Foundation Resources Available in Spanish

This fall, CTF is introducing two new features for the Spanish-speaking members of our community. People whose first language is Spanish will now be able to go to www.nfregistry.org and access the surveys in Spanish. In addition, our popular Newly Diagnosed with NF1 booklet is now available in Spanish. For copies, or a link to this publication on our website, please email info@ctf.org.
RESEARCH NEWS

2014 SCHWANNOMATOSIS AWARDS:

Founded in 2007, the Children’s Tumor Foundation Schwannomatosis Awards have funded over $1 million worth of research into this area of neurofibromatosis. The Foundation is pleased to announce the latest grantees of this award.

Miriam Smith, PhD
University of Manchester
Schwannomatosis Genomes
Schwannomatosis is characterized by non-vestibular, non-intradermal schwannomas. Schwannomatosis is caused by germline mutations of SMARCB1 and the newly identified gene, LZTR1. This Schwannomatosis Award aims to identify new genes involved in schwannomatosis using whole genome sequencing. The discovery of a new gene predisposing to schwannomatosis will help doctors better understand the disorder and introduce a new clinical approach to disease management.

James Walker, PhD
Harvard Medical School
Developing a Schwannomatosis Cell Model Using CRISPR/Cas9 Genome Editing
Schwannomatosis is a late-onset tumor predisposition disorder, distinct from neurofibromatosis types 1 and 2. CRISPR/Cas9 is a powerful technique for precise editing of the genome of cells. Dr. James Walker will use immortalized human Schwann cells to model schwannomatosis by introducing patient-specific mutations targeting NF2, SMARCB1 and LZTR1 using CRISPR/Cas9. In this way, he will generate a series of Schwann cell lines that have mutations in NF2 and SMARCB1 or LZTR1, mimicking the situation in schwannomas, and forming the basis of an in vitro schwannomatosis model.

2014 DRUG DISCOVERY INITIATIVE AWARDS: Round 2 Recipient

The Drug Discovery Initiative (DDI) awards program is focused on seed funding preclinical drug testing studies on neurofibromatosis in cell or animal models, and is one of the most successful Children’s Tumor Foundation programs to date. The Foundation is pleased to announce the most recent recipient of this important grant.

Florent Elefteriou, PhD
Vanderbilt University
A Dual Trametinib-BMP2 Treatment to Promote Bone Union in NF1
Children with neurofibromatosis type I (NF1) can present with skeletal dysplasia, including bowing of the tibia that often leads to fracture and does not heal (pseudarthrosis). This condition requires repeated and invasive surgeries, and is associated with extreme morbidity. Dr. Elefteriou has recently shown that combined MEK inhibition with BMP2 stimulation promotes bone healing in models of NF1 pseudarthrosis. This DDI award will allow Dr. Elefteriou to collect crucial preclinical data to support the use of Trametinib and BMP2 to promote bone repair in children with NF1 pseudarthrosis, which may lead to a clinical trial.

Plastic Surgeon’s Work on NF1 Patients Promising
In September, the French plastic surgeon Professor Laurent Lantieri gave a spectacular presentation at the European NF meeting in Barcelona during which he showed the incredible benefit of surgery in certain cases of NF1. Dr. Lantieri has operated on over 600 patients including two face transplants in extreme cases. His work is able to show clear statistics on outcomes. Dr. Annette Bakker invited him to New York and organized a meeting with Dr. Michael Fisher, a top neuro-oncologist in the NF field, on November 4th to identify next steps.
2013 DRUG DISCOVERY INITIATIVE FUNDING AWARDED

The Drug Discovery Initiative (DDI) awards program was designed to provide a critical early-stage doorway to the NF preclinical pipeline. These small scale awards, with a quick application and turn-around process, allow the Foundation to fuel the therapeutic pipeline for a relatively small investment. This year, the DDI program funded four proposals in the first round and CTF is in the process of evaluating with reviewers the second round of applications.

The first four funded labs are:

Jean Nakamura, MD
University of California San Francisco
Identification of Novel Targets in NF1 Cancers by Drug Sensitivity Profiling

TEST DIFFERENTIALLY MUTATED SUBTYPES OF NF1 TUMORS FOR DRUG SENSITIVITY TO DEFINE SPECIFIC SIGNALING PROFILE SIGNATURES AND EFFECTIVE DRUGS FOR CLINICAL APPLICATION

The Neurofibromatosis Syndrome, characterized by loss of the NF1 gene, confers increased risk of cancer development. The investigators have developed a unique mouse model of cancers caused by NF1 loss. One of the goals of this study is to analyze these tumors to define how mutations in the NF1 gene lead to cancer, and how these processes can be stopped. The project uses a 94-compound drug library of established chemotherapeutic agents, representing multiple cancer signaling pathways, against the tumors generated to identify critical biological processes that work with NF1 to cause cancer. This information will help classify subtypes of NF1 tumors by characteristic mechanisms of cancer formation helping direct patients to appropriate and effective therapies.

Lei Xu, MD, PhD
Harvard Medical School, Massachusetts General Hospital
Effect of TGF-beta Blockade in Recurrent NF2 Vestibular Schwannoma

TEST OF NOVEL DRUG IN COMBO WITH RADIATION THERAPY FOR VESTIBULAR SCHWANNOMA

The hallmark of NF2 is bilateral vestibular schwannomas (VS). Ionizing radiation has become a standard treatment for VS. Despite the initial response to radiation, most patients with NF2 ultimately relapse and develop resistance to further radiation therapy. This project will focus on the effect of TGF-β, a particular cell signaling pathway, as the most potent inducer of fibrosis in general and fibrosis correlated with hearing loss in VS using an established VS model that mimics human disease by progressing after radiation. The data generated in this proposal will provide insights into the potential use of TGF-β blockade as a new adjunct to radiation therapy.

Cristina Fernandez-Valle, PhD
University of Central Florida
Creation of Human Merlin-Null Schwann Cells for NF2 Studies

FIRST ATTEMPT TO EMPLOY HUMAN SCHWANN CELL LINES FOR DRUG SCREENING - NOW MOST RESEARCHERS USE MOUSE LINES

A major roadblock to developing drug therapies for NF2 is the lack of human Schwann cell lines with reduced or no expression of the merlin tumor suppressor. The investigators of this proposal are both Schwann cell biologists with combined expertise in NF2 and the cultivation of human Schwann cells. Together they propose to create a set of human Schwann cells having reduced levels of merlin protein using two different strategies. The cell lines will be characterized and their response to a panel of compounds that have known anti-proliferative effects on mouse merlin-deficient Schwann cell lines will be carried out. The end result should be creation of human Schwann cell lines lacking merlin that can be used in larger drug screens.

Charles W. Yates, MD
Indiana University School of Medicine
Testing Periostin-Cre NF2 Conditional Knockout Mouse for Potential Treatment Compounds Useful for NF2

NEW NF2 ANIMAL MODEL GENERATION: FIRST NF2 ANIMAL THAT DEVELOPS VS AND BECOMES DEAF, NEED FOR VALIDATION AS PRECLINICAL MODEL – USE EXISTING EFFECTIVE DRUGS THAT WERE TESTED IN THE CLINIC AND SEE IF THE MODEL PREDICTS CORRECTLY

This group developed a genetically engineered mouse (a mouse with changes to the DNA similar to the genetic changes seen in people with the disease) by causing the gene, merlin, which is responsible for development of NF2, to have mutations early in development. Changes in the gene in this mouse led to some of the tumors similar to those most commonly seen in humans (vestibular schwannomas, which are otherwise known as acoustic neuromas). Using this mouse as a model would be helpful because testing compounds developed to treat NF2-related tumors could also test some of the specific endpoints similar to what is seen in people. To determine if this is a useful model, the group proposed testing AR42, a specific class of medication called an HDAC inhibitor and a compound that in lab studies of cells and other mouse models may potentially be useful in people with NF2 because it reduces or shrinks the size of vestibular schwannomas. The project will examine if the treated mice will respond with preservation of hearing and decrease in tumor size over a three month period of treatment.
Children’s Tumor Foundation Funds Six Drug Discovery Initiatives

The Children’s Tumor Foundation Drug Discovery Initiative (DDI) program, launched in 2006, provides a drug screening mechanism for researchers with a concept that may advance therapies for the manifestations of NF. DDI awards invest relatively small amounts of funding into projects that could provide exponential return in follow-on funds from government and industry sources.

Below are the six most recent DDIs funded by the Children’s Tumor Foundation:

Chris Maxwell, University of British Columbia and Conxi Lazaro, Catalan Institute of Oncology-IDIBELL: Targeting NF1 Associated MPNST with Aurora Kinase Inhibitors

Filippo Giancotti, Memorial Sloan-Kettering Cancer Center: Preclinical Efficacy of the Nedlylation Inhibitor MLN4924 in Neurofibromatosis Type 2

Nancy Ratner, Cincinnati Children’s Hospital Medical Center: In Vivo Testing of Anti-Oxidants in NF1 CNS

Andrea McClatchey, Massachusetts General Hospital: Heterogeneity of Drug Response in NF2-deficient Schwannomas

Rajesh Khanna, Indiana University: Assessment of Peptide-based Disruptors of the Neurofibromin and CRMP-2 Interaction as Novel Analgesics for NF1

Michael Brownstien, Pisces Therapeutics, LLC: Small Molecule Ras Inhibitor for the Treatment of Neurofibromatosis Type 1

Cupid’s Undie Run registration is now available at www.CupidsUndieRun.com

Cupid’s Undie Run is a one mile fun run in which participants race in their underwear, outdoors, on Valentine’s Day weekend. There will be a Cupid’s Undie Run in 17 cities across the U.S. Please go to www.cupidsundierun.com for more information and to register.